3. Baur-Strassen Theorem

Tuesday, August 29, 2023 12:17 PM

Theorem (Baur-Strassen' 83): Suppose $f(X_1, ..., X_n) \in \mathbb{F}[X_1, ..., X_n]$ is computed by a chrowith C of Size S. Then $\frac{\partial f}{\partial X_1}, ..., \frac{\partial f}{\partial X_n}$ are computed by a multi-autput

Charit of size O(s).

Remark:

Note that if fire, for are polynorials computed by a multi-output charit of size of size s, then \(\frac{1}{2} \) it is a [f[\times_i,-,\times_i] to the first of size st O(t).

Baux-Strassen implies that we can go back: If $\sum_{i=1}^{n} f_i \cdot t_i$ is computed by a closult of she of sh

In particular, multi-out put-ness does not help in proving charit lave bounds:

If fi, fin require a large dualit to compute simultaneously,

then \(\frac{m}{2} \) fiti also regules a large drawk (in a fine-grahed sense.)

Remark 2: A chair of she's computing f can be turned into a chair of shee O(s) computing $\frac{\partial f}{\partial x_i}$, for each i, he recursion: $f \bigoplus_{i \neq j} \frac{\partial f}{\partial x_j} = \frac{\partial f}{\partial x_j} + \frac{\partial f}{\partial x_j} + \frac{\partial f}{\partial x_j} = \frac{\partial f}{\partial x_i} + \frac{\partial f}{\partial x_j} + \frac{\partial f$

Lemma (chain rule in multivariate derivatives)

Let g = F(x, ..., Ym], h, --, h m = F[X, ..., Xn]. Let f=g(h, ..., hm)

Then $\frac{\partial f}{\partial X_i} = \sum_{j=1}^m \frac{\partial g}{\partial y_i} (h_{j,j-j} h_m) \cdot \frac{\partial h_j}{\partial x_i}$ for i=1,-j,n.

Proof sketch: At a point $\alpha=(\alpha_1,...,\alpha_n)$, $h_j=h_j(\alpha)+\sum_{i=1}^n\frac{\partial h_i}{\partial x_i}(\alpha)(x_i-\alpha_i)+h_j$ (1)

where $h_j\in(X_j-\alpha_1,...,X_n-\alpha_n)$

where h; & (X,-a, ..., Xn-an) Let $b_{i} = h_{i}(a)$ and $b = (b_{i}, \dots, b_{m})$. Then $g = g(b) + \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(b)(y_{j} - b_{j}) + g^{2}$ $for_{j=1}, \dots, m$ where $g \in (y_{i} - b_{i}, \dots, y_{m} - b_{m})^{2}$ By (2), $f = g(h_1 - yh_m) = g(h) + \sum_{j=1}^{n} \frac{\partial g}{\partial y_j}(h)(h_j - h_j(a)) + \tilde{f}$ (Note $h_j = h_j(a)$) where $\hat{f} = \hat{g}(h_1, \dots, h_m) \in \langle h_1 - h_1(a), \dots, h_m - h_m(a) \rangle$ $\leq \langle \chi_1 - \alpha_1, \dots, \chi_n - \alpha_n \rangle^2$. By (1), we further have $f = f(a) + \sum_{i=1}^{m} \frac{\partial g}{\partial y_i}(b) \left(\sum_{i=1}^{m} \frac{\partial h_i}{\partial x_i}(a) (x_i - \alpha_i) + h_i\right) + f$ $= f(a) + \frac{1}{2} \frac{1$ But we also have $f \equiv f(a) + \frac{h}{2} \frac{\partial f}{\partial x_i}(a) \left(x-a_i\right) \mod \left(x_1-a_1, \dots, x_n-a_n\right)^2$ X,-a,,-, Xy-an are a basis of {p-F[x,-, xn]; P(a)=03/(x,-a,,-, xn-an) So $\frac{\partial f}{\partial x_i}(a) = \frac{\pi}{2} \frac{\partial g}{\partial y_i}(b) \frac{\partial h_i}{\partial x_i}(a)$ for $i=1,\dots,h$. The same holds when a,,..,an are replaced by variables Xi,..., Xn. $=)\frac{\partial f}{\partial x_{i}}=\frac{1}{2\pi}\frac{\partial g}{\partial y_{i}}(h_{i},...,h_{m})\frac{\partial h_{j}}{\partial x_{i}}+or\ i=1,...,h.$ Proof of Baur-Strassen: We show size needed to compute of the chart C computing f. to gartes)

Induct on the size: # when of the chart C computing f. to gartes) Base case: Chas no non-leaf. Then I's either a constant or a variable Xio Fither case, It, ..., It can be computed by a create of stre O(n) = O(# whes + # gatos)

() () () () Xn mpure of size 0(4) = 0 (# whes + * gates)

Induction Step: Suppose C has a nonlart h, We may assume $h = l_1 + l_2$ or $l_1 \times l_2$ where li, lz cire leaves
i.e. constants or variables

C. Oh

Let C' be the circult obtained from C by replacy h by a new input variable y where the whoes between he and by, and he and by are removed. 50 sne (d) € she (c)-1.

Let 9 CF[X1, -, Xn, Y] be the polynomial that C' computes

Then $f = g(x_1, x_n, h)$.

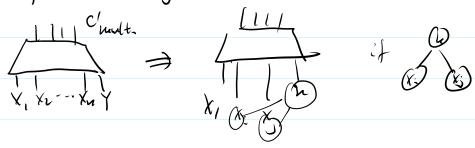
So for i=1,..., n, $\frac{\partial f}{\partial x_i} = \left(\sum_{j \neq 1}^{N} \frac{\partial g}{\partial x_j} (x_{i, \dots}, x_{n, h}) \cdot \delta_{i, j}\right) + \frac{\partial g}{\partial y} (x_{i, \dots}, x_{n, h}) \frac{\partial h}{\partial x_i}$

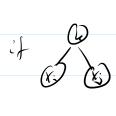
 $= \frac{\partial 9}{\partial x_{i}}(x_{i}, x_{n}, h) + \frac{\partial 9}{\partial y}(x_{i}, x_{n}, h) \cdot t_{2} \tag{(*)}$

By the induction hypothesis, $\frac{\partial g}{\partial x_1}(x_1, x_1, x_2)$, $\frac{\partial g}{\partial x_1}(x_1, x_2, x_3)$, $\frac{\partial g}{\partial x_2}(x_1, x_2, x_3)$

one conjuted by a chart C'unt of Stre O (Stre(C'))

Replaced y in C'mult: by h





Then we get a chart computy $\frac{\partial g}{\partial x_i}(x_i, x_u, h), \dots, \frac{\partial g}{\partial x_n}(x_i, x_u, h), \frac{\partial g}{\partial y}(x_i, x_u, h), \frac{\partial g}{\partial y}(x_i, x_u, h), \frac{\partial g}{\partial x_i}(x_i, x_u, h), \frac{\partial g}{\partial y}(x_i, x_u, h), \frac{\partial g}{\partial x_i}(x_i, x_u, h), \frac{\partial$

Application: Shortest cycle.

Guen a directed grap G on n nodes with edge weights in E1,..., M? how fast can we find a cycle with the minimum total weight?

Diskstra for each mode as the start mode: $O(N^3 \log M)$ No "truly subjected (algorithm known, determinister or randomized. $O(N^{3-c} \cdot \text{pdylog}M)$, c > 0,

Using Bour-Strassen, we will see a randownized algorithm with running time $\hat{O}(N^{\omega}.M)$, where ω is the matrix multiplication exponent ($\omega < 2.38$).

Cygan - Gabon - Sankovski, JACM 15.