Theorem (Baur-Strassen'83): Suppose $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is computed by a circuit C of size s. Then $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}$ are computed by a multi- output cranit of size $O(s)$.
Note that if $f_{1}, \cdots, f_{m} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ are polynomials computed by a multc-autput circuit of size s, then $\sum_{i=1}^{m} t_{i} \cdot t_{i} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}, t_{1}, \cdots, t_{m}\right]$ is computed by a chart of size $s+O(t)$.
Baur-Strassen implies that we can go back: If $\sum_{i=1}^{m} f_{i} \cdot t$ is computed by a circuit of sine s, then f_{1}, \cdots, f_{m} are computed by a multi-output droult of she $O(s)$.
In particular, multi-output-ness does not help in proving craccit lover bounds:
If f_{1}, \cdots, f_{m} require a large chreutt to compute simultanearly, then $\sum_{i=1}^{m} t_{i} t_{i}$ also requires a large dran't (in a fine-graned sense.)

Remark 2: A chant of she s computing f can be turned in to a chest of sher $O(s)$ compitug $\frac{\partial f}{\partial x_{2}}$, for each i, via recursion:

$$
f_{1}^{f} \hat{o}_{0}^{\prime} \quad \frac{\partial f}{\partial x_{2}}=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}} f_{0}^{f} \otimes f_{2} \quad \frac{\partial f}{\partial x_{i}}=\frac{\partial f_{1}}{\partial x_{2}} \cdot f_{2}+\frac{\partial f_{2}}{\partial x_{i}} \cdot f_{1} .
$$

The noutviulat part of Baur-Strassen is saving the factor of n.
Lemma (chain rule in multivariate derivatives)
Let $g \in \mathbb{F}\left[y_{1}, \cdots, y_{m}\right], h_{1}, \cdots, h_{m} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. Let $f=g\left(h_{1}, \cdots, h_{m}\right)$
Then $\frac{\partial f}{\partial x_{i}}=\sum_{j=1}^{m} \frac{\partial g}{\partial y_{i}}\left(h_{1}, \cdots, h_{m}\right) \cdot \frac{\partial h_{j}}{\partial x_{i}} \quad$ for $i=1, \cdots, n$.
Proof sketch: At a pout $a=\left(a_{1}, \cdots, a_{n}\right), h_{j}=h_{j}(a)+\sum_{i=1}^{n} \frac{\partial h_{j}}{\partial x_{i}}(a)\left(x_{i}-a_{i}\right)+h_{j}$ where $\tilde{h}_{j} \in\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle^{2}$
where $\tilde{h}_{j} \in\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle^{2}$ for $j=1, \cdots, m$.
Let $b_{j}=h_{j}(a)$ and $b=\left(b_{1}, \cdots, b_{m}\right)$. Then $g=g(b)+\sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(b)\left(y_{j}-b_{j}\right)+g{ }^{n}$ for $;=1, \cdots, m$
$f(a)$

$$
\begin{equation*}
\text { where } \tilde{g} \in\left(y_{1}-b_{1}, \cdots, y_{m}-b_{m}\right\rangle^{2} \tag{2}
\end{equation*}
$$

$$
B_{y}(2), f=g\left(h_{1}, \cdots, h_{m}\right)=g(b)+\sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(b)\left(h_{j}-h_{j}(a)\right)+\tilde{f} \quad\left(\text { Note } b_{j}=h_{j}(a)\right)
$$

$$
\text { where } \hat{f}=\hat{g}\left(h_{1}, \cdots, h_{m}\right) \in\left\langle h_{1}-h_{1}(a), \cdots, h_{m}-h_{m}(a)\right\rangle^{2}
$$

$$
\leq\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle^{2} .
$$

By (1), we furtler have

$$
\begin{aligned}
& \text { we furtler have } \begin{aligned}
f= & f(a)+\sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(b)\left(\sum_{i=1}^{n} \frac{\partial h_{j}}{\partial x_{i}}(a)\left(x_{i}-a_{i}\right)+h_{j}\right)+\tilde{f} \\
& \equiv f(a)+\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \frac{\partial g}{\partial y_{j}}(b) \frac{\partial h_{j}}{\partial x_{i}}\left(a\left(x_{i}-a_{i}\right) \bmod \left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle^{2}\right.
\end{aligned}>=\text { (3) }
\end{aligned}
$$

But we also have $f \equiv f(a)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(a)\left(x_{i}-a_{i}\right) \quad \bmod \left(x_{1}-a_{1} \cdots, x_{n}-a_{n}\right)^{2}$ $x_{1}-a_{1}, \cdots, x_{n}-a_{n}$ are a basi's of $\left\{P \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right] ; P(a)=0,\right\} /\left\langle x_{1},-a, \cdots x_{n}-a_{n}\right\rangle^{2}$
So $\frac{\partial t}{\partial x_{i}}(a)=\sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(b) \frac{\partial h_{j}}{\partial x_{i}}$ (a) for $i=1, \cdots, n$.
The same holds when a_{1}, \cdots, a_{n} are replaced by varlables X_{1}, \cdots, X_{n}.

$$
\Rightarrow \frac{\partial f}{\partial x_{i}}=\sum_{i=1}^{m} \frac{\partial g}{\partial y_{j}}\left(h_{1}, \cdots, h_{m}\right) \frac{\partial h_{j}}{\partial x_{i}} \text { for } i=1, \ldots, n \text {. }
$$

Proof of Baur-Strassen: We show size needed to compute $\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}$ is O (\#wings
Induct on the size: $=\#$ wines + gates of the circurt C compating f. t \#ates)
Base case: Chas no non-leaf. Then f is either a constart or a variable $X_{i_{0}}$
If $t=c, \frac{\partial f}{\partial x_{i}}=0$. If $f=x_{i 0}, \frac{\partial f}{\partial x_{i}}= \begin{cases}1 & i_{0}=i \\ 0 & i_{0} \neq i\end{cases}$
Either case, $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{x_{n}}$ can be compited by a cricult of size $O(n)=O$ (\#whes + \#gates)
 $O(n)=O$ (\#whes t tegates)
Induction Step: Suppose C has a nonlaf h, We may assune $h=l_{1}+l_{2}$

$$
o r l_{1} \times l_{2}
$$

where l_{1}, l_{2} are leaves ie. coustants or variables.

Let C ' be the curcult obtahed from C by replacty h by a new input varakhe Y. where the whes betwan h and l_{1}, and h and l_{2} are removed.
So size $\left(c^{\prime}\right) \leqslant$ slie $(c)-1$.
Let $g \in \mathbb{F}\left[X_{1}, \cdots, X_{n}, Y\right]$ be the polynoulal that C^{\prime} computes
Then $f=g\left(x_{1}, \cdots x_{n}, h\right)$.

$$
\begin{align*}
& \text { So for } i=1, \cdots, n, \frac{\partial f}{\partial x_{i}}=\left(\sum_{j=1}^{n} \frac{\partial g}{\partial x_{j}}\left(x_{1}, \cdots, x_{n}, h\right) \cdot \delta_{i j}\right)+\frac{\partial g}{\partial y}\left(x_{1}, \cdots, x_{n}, h\right) \frac{\partial h}{\partial x_{i}} \\
&= \frac{\partial g}{\partial x_{i}}\left(x_{1}, \cdots, x_{n}, h\right)+\frac{\partial g}{\partial y}\left(x_{1}, \cdots, x_{n}, h\right) \cdot t_{i} \quad(*) \tag{*}\\
& \text { where } t_{i}=\frac{\partial h}{\partial x_{i}} \in\left\{0,1, x_{j}\right\} \\
& t_{i} \neq 0 \text { for constaty many } i .
\end{align*}
$$

By the induction hypottesk, $\frac{\partial g}{\partial x_{1}}\left(x_{1}, \cdots, x_{n}, y\right), \cdots, \frac{\partial g}{\partial x_{n}}\left(x_{1}, \cdots x_{n}, y\right), \frac{\partial g}{\partial y}\left(x_{1}, x_{n} y\right)$ are coupuled by a chrult $C_{\text {malte }}^{\prime}$ of size $O\left(\operatorname{size}\left(c^{\prime}\right)\right)$
Roplachy y bo $C_{\text {mult: }}^{\prime}$ by h

Then we get a circuit computer $\frac{\partial g}{\partial x_{1}}\left(x_{1}, \cdots, x_{n}, h\right), \cdots, \frac{\partial g}{\partial x_{n}}\left(x_{1}, \cdots, x_{n}, h\right), \frac{\partial g}{\partial y}\left(x_{1}, \cdots x_{n}, h\right)$. Compute $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}$ using $(*)$

As ti fo for constantly many $(\leq 2) i$, the Sire increases by $\leq O(1)$.
Application: Shortest dy ale.
Gwen a directed grape G on n nodes with edge welghts in $\{1, \ldots, M\}$, how fast can we find a cycle with the minimum total weight?

Dijkstra for each node as the start node: $O\left(n^{3} \log M\right)$ No "truly subicubic" algorthe known, deterministic or randomized.

$$
O\left(n^{3-c} \cdot p d y \log M\right), c>0
$$

Uni Baur-Strassen, we wall see a randomized a (goithm with running time $\overparen{O}\left(K^{\omega} \cdot M\right)$, where ω is the matrix multiplication exponent $(\omega<2.38)$.
Cygan-Gabow-Sankowski, JACM'15.

